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Introduction

l Path length in FFAG arc not independent of energy.

u Very nearly quadratic

u Particle won’t come back to RF at same phase each time

u High-frequency RF: walk off crest

l Given the maximum path length deviation, how many turns can a particle be
accelerated

u Answer: infinite

u Linac voltage goes to nonzero value as turns go to infinity

u Minimum voltage increases linearly with path length deviation

l How does acceptance vary with number of turns?
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Lattice Description

l Alternating sequence of cavities/linacs and arcs

l Two types of systems

u Racetrack (or small number of sides): two long linacs, two long arcs

u Distributed RF: many short arcs alternating with single cavities

l Path length varies quadratically with energy in arcs

u Minimum path length at middle energy

u Being exactly quadratic not essential

u Can adjust total arc length so that zero (relative to integer number of RF
cycles) occurs for any energy you want (different trick for distributed RF)

l All cavities/linacs have same phase

l Ignore time-of-flight change in linac
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Equations

l Equations of motion

En+1 = En + V cos(ωτn) τn+1 = τn + ∆T
(
En+1 − Eavg

∆E/2

)2
− T0

u En is energy after nth cavity/linac pass

u τn is time-of-flight relative to crest in nth linac

u ∆E is total energy gain

u Eavg is middle energy

u ∆T is the difference in time-of-flight from the minimum to the end of the
parabola

u T0 a time-of-flight offset that can be generated by changing the arc length
(or relative cavity phasing in a distributed RF system)
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Finding System Parameters

l Fix N , the number of turns, and EN − E0 = ∆E, the total energy gain.

l ∆T is given by the lattice design

l Minimize V , the required RF voltage by varying

u τ0, the time at which you enter the first cavity/linac

u T0, the time-of-flight offset from zero of the minimum of the parabola
H For long arcs (generally few long linacs per turn), adjust arc length

slightly
H For short arcs (many arcs and small cavities distributed evenly around the

ring), adjust relative cavity phases
ã If M cavities per turn, relative phase a multiple of 2π/M
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Continuous Approximation

l Write discrete equations as differential equations

dE

dn
= V cos(ωτ)

dτ

dn
= ∆T

(
E − Eavg

∆E/2

)2
− T0

l Eliminate n

∆T

(
E − Eavg

∆E/2

)2
− T0


 dE = V cos(ωτ)dτ
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Continuous Approximation (cont.)

l Integrate both sides

∆T∆E
6

(
E − Eavg

∆E/2

)3
+

∆T∆E
6
− T0(E − E0) =

V

ω
[sin(ωτ)− sin(ωτ0)]

u RHS is bounded for fixed V

u LHS has two internal extrema, plus value at maximum E.

u Maximum of these three determines minimum V

u Choose T0 minimizing that maximum

l That optimum occurs when

T0 =
∆T
4

ωτ0 =
π

2
V =

ω∆T∆E
24

Note V ∝ (∆E)3 for given arcs

7



Description of Motion

l Cross crest three times

u Starts far off-crest, oscillates to about same distance off-crest on other side

l Validity of continuous approximation

u As N →∞ with N∆φ fixed, solution approaches continuous
approximation
H Distributed RF

u If fix ∆φ and let N →∞:
H Racetrack
H Appears that T0 and V nearly continuous values
H Reason for differences: ∆φ still gives a finite phase jump at beginning for

large N
H Reason can still have infinite N : much time spent near synchronous

phase
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Sample Solution

l ∆φ = 1 radian

l Can get large number of turns

l Little to be gained in cost by going past 30 half-turns

l Voltage and T0 approach continuous approximation values

u V actually a bit less

l Note large number of turns spent near phase extrema

l Acceptance

u Appears to decrease with increasing turns

u Width increases with increasing turns: crest-crossing
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Conclusions and Improvements

l Can quickly compute minimum voltage needed in FFAG accelerator

l Can accelerate for arbitrary number of turns

u Linac voltage does not go to zero

u Phase space acceptance decreases

l Results for different voltage profile or time-of-flight profile qualitatively
similar

u Linear time-of-flight would cross crest twice. Less optimal for given total
swing.

l Improvements

u Allow linacs to have different phases, also different arcs

u Increase voltage above optimum: better phase space acceptance?
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